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Abstract. Classical results of Decision Theory, and its extension to
a multi-agent setting: Game Theory, operate only at the associative
level of information; this is, classical decision makers only take into
account probabilities of events; we go one step further and consider causal
information: in this work, we define Causal Decision Problems and extend
them to a multi-agent decision problem, which we call a causal game.
For such games, we study belief updating in a class of strategic games in
which any player’s action causes some consequence via a causal model,
which is unknown by all players; for this reason, the most suitable model
is Harsanyi’s Bayesian Game. We propose a probability updating for the
Bayesian Game in such a way that the knowledge of any player in terms
of probabilistic beliefs about the causal model, as well as what is caused
by her actions as well as the actions of every other player are taken into
account. Based on such probability updating we define a Nash equilibria
for Causal Games.
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1 Introduction

Causal reasoning is a constant element in our lives as it is human nature to
constantly ask why. Looking for causes is an everyday task and, in fact, causal
reasoning is to be found at the very core of our minds [40, 8]. It has been argued
that the brain itself is a causal inference machine which uses effects to figure out
causes in order to actively engage with the world [10, 7, 25].

An important aspect of acting in the world is being able to make decisions
under uncertain conditions [8, 25]. In their seminal work [39], von Neumann and
Morgenstern answered how to make choices if rational preferences are assumed and
the decision maker knows the stochastic relation between actions and outcomes:
maximize expected utility. If such relation is unknown, then J.L. Savage showed in
[33] that a rational decision maker must choose as if is maximizing her expected
utility with respect to a subjective probability distribution.
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The previous results of von Neumann-Morgenstern and Savage provide formal
criteria for decision making if rationality is assumed and information about the
environment is considered only at the asociative (i.e., probabilistic) level.

These criteria are the basis for many of the techniques used in Artificial
Intelligence; for example, Reinforcement Learning algorithms learn optimal
policies that satisfy the Bellman Equations [37, 31]; therefore, any action
prescribed by an optimal policy achieves the maximum expected utility as
shown in [41]. Several studies have considered how human beings use causal
information when making decisions with uncertain outcomes. It is known that
humans tend to prefer causal information over purely probabilistic data [38]; and,
in fact, it is shown in [17] that acting in the world is conceived by human beings
as intervening on it; Therefore, it does not come up as a surprise that humans
are able to learn and use causal relations while making single choices as well as
in sequential decisions as shown in [8, 35, 11, 28, 24, 15, 27, 16, 32, 14].

Decision problems faced by a rational agent usually involve the decisions made
by other agents as well as other, possibly unknown, factors. As seen in several
applications, interactive reasoning is a fundamental aspect of human every-day
reasoning and it should be addressed by any intelligent agent as argued in [25].
We consider to be of interest the multi-agent setting for causal decision making;
for this reason, we consider the interaction of several rational and causal-aware
decision makers whose decisions affect each other.

Game Theory [29] deals with situations in which several rational decision
makers, or players, interact while pursuing some well-defined objective; the case
in which decision makers make a choice simultaneously without knowing the
choice made by the other players is called a strategic game; a well-known strategic
game is the famous prisoners’ dilemma in which two detainees must choose
between confessing or remaining silent and both know the consequences of any
combination of actions, what is ignored by each player is the decision made by
the other.

When players ignore both the actions made by other players as well as
the knowledge that made them choose a certain action, is called a game with
incomplete information, or a Bayesian Game which was introduced by Harsanyi
in [18, 19, 20]. In this work we will use the Bayesian Game model in order to study
what happens when several decision makers have certain knowledge about an
environment which is controlled by some, unknown but fixed, causal mechanism.
We will first study one-player games, or decision problems, in which the player’s
actions cause some consequence according to some unknown causal model; for
this case, we will provide a rational choice criterion which will serve us to define
a Nash equilibrium in Causal Games.

2 Causation and Classical Decision Problems

2.1 Causation

The notion of causation deals with regularities found in a given environment
which are stronger than probabilistic (or associative) relations in the sense that
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a causal relation allows for evaluating a change in the consequence given that
a change in the cause is performed, while probabilistic relations only capture
patterns that appear on observed data. For example, when training only on
observed samples (x, y), a Bayesian Network can be equally trained as X → Y
or Y → X, see [2] Apendix A for a theoretical argument.

We adopt here the manipulationist interpretation of Causality as expressed by
Woodward in [42]. The main paradigm is clearly expressed in [6] as manipulation
of a cause will result in a manipulation of the effect. Consider the following
example from [42]: manually forcing a barometer to go down won’t cause a storm,
whereas the occurrence of a storm will cause the barometer to go down.

We restrict ourselves to probabilistic causation and adopt the formal definition
of Causality given in [36]; i.e., a stochastic relation between events which is
irreflexive, antisymmetric and transitive; such formal definition is encompassed
by the manipulationist interpretation. Similar descriptions of the manipulationist
approach can be found in [21] and [9]. Causal inference tools, such as Pearl’s
do-calculus, stated in [30], allows to find the effect of an intervention in terms
of probabilistic information when certain conditions are met. For what remains,
we assume the causal axioms found in [36] with the condition known as causal
sufficiency.

2.2 Classical Decision Theory

Classical decision making consist of a set A of available options to a rational
decision maker, and a family E of uncertain events which will affect the conse-
quence of the action made by the decision maker; any knowledge by the decision
maker of such uncertainties is available only at the associative, or probabilistic,
level of information. We now state the formal framework for classical decision
making as we will use it in order to build upon the causal version of it:

Definition 1. An uncertain environment is the tuple (Ω,A, C, E). Where A is
a non-empty set of available actions, C a set of consequences and E an algebra of
events over Ω.

When we consider the preferences of some decision maker over the set of
consequences of some uncertain environment we have a Decision Problem under
Uncertainty:

Definition 2. A Decision Problem under Uncertainty is an uncertain environ-
ment (Ω,A, C, E) plus a preference relation � defined over C.

2.3 Causal Environments and Causal Decision Problems

In this section we define a Causal Environment to be an uncertain environment
for which there exists a Causal Graphical Model (CGM) G which controls the
environment. Details on CGMs can be found in [22].

Definition 3. A Causal Environment is a tuple (Ω,A,G, C, E) where (Ω,A, C, E)
is an uncertain environment and G is a CGM such that the set of variables of G
correspond to the uncertain events in E.
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2.4 Rational Choice in Causal Environments

Consider a decision maker who knows that any action she takes will cause a
certain action, but she does not explicitly knows the form of such causal relation,
she only have probabilistic beliefs about such relation. We define in this section
a formal framework for studying such situations.

Definition 4. We define a Causal Decision Problem (CDP) as (A,G, E , C,�)
where (A,G, E , C) is a Causal Environment and � is a preference relation.

For the CGM in a given CDP we will distinguish two particular variables: one
corresponding to the available actions, and one corresponding to the caused
outcome. We are considering that only one variable can be intervened upon and
that the values of such variable represent the actions available to the decision
maker; i.e., the value forced upon such variable under an intervention represents
the action taken by the decision maker. The intuition behind the definition of a
Causal Decision Problem is this: a decision maker chooses an action a ∈ A, which
is automatically inputed into the model G, which outputs the causal outcome
c ∈ C. We say a CDP is finite if the set A is finite. We now provide a decision
criterion for rationally choosing in a Causal Decision Problem.

Theorem 1. In a finite Causal Decision Problem (A,G, E , C,�), where G is a
Causal Graphical Model, we have that the preferences � of a decision maker are
Savage-rational if and only if there exists a probability distribution PC over a
family F of causal models such that for a, b ∈ A:

a � b if and only if:∑
c∈C

u(c)

∑
g∈F

Pg(c|do(a))PC(g)

 ,

≥∑
c∈C

u(c)

∑
g∈F

Pg(c|do(b))PC(g)

 ,

where Pg is the probability distribution associated with the causal model g.

Proof. The decision maker is facing an environment in which any action she takes
will stochastically cause an outcome c ∈ C. For this reason, the decision making
is facing a very particular case of decision making under uncertainty. Assuming
rationality, we invoke Savage’s Theorem [33, 23, 12] to obtain a utility function
uS and a probability measure PS which satisfy that the preference relation is
represented by the expectation of uS with respect to PS .

In such a causal environment, the CGM G contains all of the information
which connects actions, uncertain events and outcomes, and noting that we can
identify any action a with {cj |Ej : j ∈ J} where J a countable set of indexes [3]
we have that:

EPS [u(c)] =
∑
j∈J

u(cj)P
S(Ej).
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For each action a = {cj |Ej : j ∈ J}, PS(Ej) is the probability of causing
consequence cj by choosing action a. In order for the decision maker to find the
probability of a certain consequence cj given that an action a is performed then
she must have in mind a single causal model g and a way to assign probabilities
over a family of causal models; i.e., the uncertainty component PS(Ej) is formed
by two parts: a distribution PC which represents the degree of belief of the
decision maker about a specific model g being the true one, and within g, a
distribution Pg used to calculate the probability of causing some consequence cj
given that action a is chosen. Using the Caratheodory Extension Theorem [1] a
probability measure PC whose support is a sufficiently general family of causal
models F can be shown to exist. For g ∈ F , the decision maker considers g
to be the true causal model with probability PC(g), and within g, we use the
classical von Neumann-Morgenstern Theorem in order to obtain the best action
(see section 4.1 of [30] for details). Let Pg the probability distribution associated
with the causal model g.

Then:

EPS [u(c)] =
∑
j∈J

u(cj)P
S(Ej), (1)

=
∑
j∈J

u(cj)

∑
g∈F

Pg(cj |do(a))PC(g)

 . (2)

We have shown what is the expected utility for some action a ∈ A, and by
Savage’s Theorem the result follows.

2.5 Interpretation

Theorem 1 says that a decision maker who faces a Causal Decision Problem
is considering a probability distribution PC over a family F and, within each
structure, using the term Pg(c|do(a)) in order to find the probability of obtaining
a certain consequence given that the intervention do(a) is performed; in this way,
the optimal action a∗ is given by:

a∗ = argmax a∈A
∑
c∈C

u(c)

∑
g∈F

Pg(c|do(a))PC(g)

 . (3)

We note that a∗ is obtained by taking into account the utility obtained by every
possible consequences weighted using both the probability of causing such action
within a specific causal model g and the probability that the decision maker
assign to such g ∈ F .

We are considering a normative interpretation for Theorem 1 according to
which a decision maker must use any causal information in order to obtain the
best possible action.

Such action must be obtained by considering the beliefs of the decision maker
about the causal relations that hold in her environment (the distribution PC),
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how such relations could produce the best action when considered as if they
were true (distribution Pg), and the satisfaction (utility u) produced by the
consequences of actions [22].

3 Classical Strategic Games

A strategic game is a model of a situation in which several players must take an
action and afterwards they will be affected both by the outcome of their own
action as well as the actions of the other players. In a strategic game it is assumed
that no player knows the action taken by any other players; this is:

Definition 5. a strategic game ([29]) consists of:

– A finite set N of n players.

– For each player, a nonempty set Ai of available actions.

– For each player, a preference relation �i defined over A = A1 × · · ·An.

Definition 6. A Nash equilibrium of a strategic game G = (N, (A)i∈N , (�i)i∈N )
is a vector of strategies a∗ = (a1, a2, ..., an) such that:

(a∗−i, a
∗
i ) �i (a∗−i, bi) for all bi ∈ Ai,

where a−i = (a1, ..., ai−1, ai+1, ..., an).

This is, in a Nash equilibrium no player can find a better action given the actions
taken by the rest of the players. We adopt here the deductive interpretation
of an equilibrium, according to which an equilibrium results from rationality
principles [4, 5].

4 Causal Games

In this section, we define a causal strategic game as a strategic game within a
causal environment; this is, consider a strategic game between N rational players
who are situated in a causal environment. We assume that it is common knowledge
the causal nature of the environment as well as the rationality assumption for
each player. We also assume that the causal mechanism, which represented by
a Causal Graphical Model G, remains fixed and it is unknown for each player.
In this game, players ignore the actions taken by any other player, and since
the causal model which controls the environment is unknown by every player,
then players also ignore the information that players will use in order to take
their respective actions: for this reason, we will work within the framework of
bayesian games.
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4.1 Bayesian Games

Strategic games are games in which no player knows the action taken by the
other players; we now consider a type of game in which no player knows both the
actions taken by any other player, nor the private information that made each
player to take any action. Such model is called a Bayesian Game, introduced in
[18, 19, 20]

Definition 7. A Bayesian strategic game([29]), consists of:

– A finite set N of players.
– A finite set Ω of states of nature.
– For each player, a nonempty set Ai of actions.
– For each player, a finite set Ti and a function τi : Ω 7→ Ti the signal function

of the player.
– For each player, a probability measure pi over Ω such that pi(τ

−1
i (ti)) > 0

for all ti ∈ Ti.
– A preference relation �i defined over the set of probability measures over
A×Ω where A = A1 × · · ·An.

4.2 Bayesian Causal Games

In this section, we consider a strategic game between N rational players who
are situated in a causal environment. A game is a model of a situation in which
several players must take an action and afterwards they will be affected both
by the outcome of their own action as well as the actions of the other players.
In a strategic game it is assumed that no player knows the action taken by any
other players; we also assume that the causal mechanism, which represented by
a Causal Graphical Model G, remains fixed and it is unknown for each player.

In this game, players ignore the actions taken by any other player, and since
the causal model which controls the environment is unknown by every player,
then players also ignore the information that players will use in order to take
their respective actions: strategic games of this type are called Bayesian Game,
introduced in [18, 19, 20]. In the games we will consider, the uncertainty of every
player consists of two levels: on a first level, the true causal model G; on a second
level, what an action do(a) causes if a certain CGM ω is considered to be the
causal model.

We will consider the set Ω to be a family of possible causal models; in this
way, ω ∈ Ω being the true state of nature fixes a causal model which controls
the environment in which the players make their choices. In classical Bayesian
games, once ω ∈ Ω is realized as the true state, then each player receives a signal
ti = τi(ω) and the posterior belief pi(ω|τ−1i (ti)) given by pi(ω)/pi(τ

−1
i (ti)) if

ω ∈ τ−1i (ti). In the case for causal bayesian games, we must consider both the
probability pi of ω being the true state as well as the probability pωi of observing
a certain consequence when doing some action ai if ω is the true model.

Following [29], we define a new game G∗ in which its players are all of the
possible combinations (i, ti) ∈ N × Ti, where the possible actions for (i, Ti) is Ai.
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We see that fixing a player i ∈ N , the posterior probability p(ω|τ−1i (ti)) induces
a lottery over the pairs (a∗(j, τj(ω)))j , ω) for some other j ∈ N . This lottery
assigns to (a∗(j, τj(ω)))j , ω) the probability pi(ω)/pi(τ

−1
i (ti)) if ω ∈ τ−1i (ti).

The classical Bayesian game will simply call a Nash equilibrium for the game
G∗ a Nash equilibrium of the original game; but we have the second level of
uncertainty: the consequences caused by some action a through a causal model ω.
We notice that the posterior probability itself induces a probability distribution
defined over actions for each player once a desired consequence is fixed, this
distribution, according to Theorem 1 is given by pωi (c|do(a∗i ), a∗−i)pi(ω|τ

−1
i (ti)).

This motivates the following definition of a Causal Nash equilibrium.

4.3 Causal Nash Equilibrium

For each player i ∈ N in the strategic game, we define the following probability
distribution over consequences:

pai (c) = pωi (c|do(ai), a−i)pi(ω) for a ∈ A = A1 × · · · ×AN , (4)

where pωi is the probability of causing a certain consequence within a causal
model ω and pi are the player’s posterior beliefs about the causal model that
controls the environment, and do() is the well known intervention operator from
[30]. We now define:

uCi (a) =
∑
c∈C

ui(c)p
a
i (c) for a ∈ A = A1 × · · · ×AN . (5)

Notice that uCi evaluates an action profile a ∈ A in terms of: The knowledge
about the causal model of each player represented by pi, which allows each player
to evaluate the probability of causing outcomes in terms of actions by using the
do operator as well as the other actions taken by the other players, given by a−i
and the preferences of each player ui. Using this new function, we define the
equilibrium for a strategic game with causal information and Bayesian players as:

Definition 8. An an action profile a∗ ∈ A is a Nash equilibrium for this causal
strategic game if and only if:

uCi (a∗) ≥ uCi (ai, a
∗
−i) for any other ai ∈ Ai. (6)

This is, an action profile is a Nash equilibrium if and only if each player uses
her current knowledge about the causal model of the environment in order to
(causally) produce the best possible outcome given the actions taken by the other
players. The existence of the Causal Nash Equilibrium is guaranteed if every
Ai is a nonempty compact convex set in some Rn and if the preference relation
induced by uCi is continuous and quasi-concave.
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5 Conclusion

We have studied Decision Making under uncertainty in the case where a Causal
Graphical Model is responsible for producing an outcome given an action
(intervention) of the decision maker. We have provided a rational decision making
criterion for the case in which the decision maker does not know the causal model,
but has probabilistic beliefs about possible models.

Using our decision making result, and taking as a basis Harsanyi’s model of a
Bayesian Game in which every player has incomplete information about both
the actions taken by other players as well as the information that made each
player take his action we have been able to provide a definition of a Causal Nash
Equilibrium in which every player is aware that there exists a Causal Mechanism
that will produce some consequence once he takes an action.

Our decision making result (i.e., Theorem 1), besides motivating the Causal
Nash Equilibrium, also provides an optimality criterion for learning algorithms
in causal settings such as those presented in [26, 34, 13]. Our definition of Causal
Equilibrium takes into account classical game theory through the incorporation of
the classical von Neumann-Morgenstern utility function as well as the fundamental
notion in Causation of Pearl’s do operator.

We hope this works contributes to recent efforts of giving Causation its well
deserved place in Artificial Intelligence as well as motivating further research in
computational aspects of Causal Decision Theory.
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